Chaos and reliability in balanced spiking networks with temporal drive.
نویسندگان
چکیده
Biological information processing is often carried out by complex networks of interconnected dynamical units. A basic question about such networks is that of reliability: If the same signal is presented many times with the network in different initial states, will the system entrain to the signal in a repeatable way? Reliability is of particular interest in neuroscience, where large, complex networks of excitatory and inhibitory cells are ubiquitous. These networks are known to autonomously produce strongly chaotic dynamics-an obvious threat to reliability. Here, we show that such chaos persists in the presence of weak and strong stimuli, but that even in the presence of chaos, intermittent periods of highly reliable spiking often coexist with unreliable activity. We elucidate the local dynamical mechanisms involved in this intermittent reliability, and investigate the relationship between this phenomenon and certain time-dependent attractors arising from the dynamics. A conclusion is that chaotic dynamics do not have to be an obstacle to precise spike responses, a fact with implications for signal coding in large networks.
منابع مشابه
Structured chaos shapes spike-response noise entropy in balanced neural networks
Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To a...
متن کاملEncoding in Balanced Networks: Revisiting Spike Patterns and Chaos in Stimulus-Driven Systems
Highly connected recurrent neural networks often produce chaotic dynamics, meaning their precise activity is sensitive to small perturbations. What are the consequences of chaos for how such networks encode streams of temporal stimuli? On the one hand, chaos is a strong source of randomness, suggesting that small changes in stimuli will be obscured by intrinsically generated variability. On the...
متن کاملLearning at the edge of chaos : Temporal Coupling of Spiking Neurons Controller for Autonomous Robotic
In this paper, a recurrent spiking neural networks is trained on an robot to learn to avoid obstacles using visual flow. At the starting of the process, this network is initialized in a ”chaotic” state and a STDP-like learning algorithm is used. We argue that a proper scaling variable can direct the network from chaos to synchronized state and back. This process allows us to train the robot bec...
متن کاملChaos in neuronal networks with balanced excitatory and inhibitory activity.
Neurons in the cortex of behaving animals show temporally irregular spiking patterns. The origin of this irregularity and its implications for neural processing are unknown. The hypothesis that the temporal variability in the firing of a neuron results from an approximate balance between its excitatory and inhibitory inputs was investigated theoretically. Such a balance emerges naturally in lar...
متن کاملDynamical entropy production in spiking neuron networks in the balanced state.
We demonstrate deterministic extensive chaos in the dynamics of large sparse networks of theta neurons in the balanced state. The analysis is based on numerically exact calculations of the full spectrum of Lyapunov exponents, the entropy production rate, and the attractor dimension. Extensive chaos is found in inhibitory networks and becomes more intense when an excitatory population is include...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2013